top of page

MLOps /LLMOps

  • Writer: Anand Nerurkar
    Anand Nerurkar
  • Nov 13
  • 16 min read

🧠 MLOps vs. LLMOps – The Difference

Aspect

MLOps

LLMOps (or GenAIOps)

Purpose

Operationalize traditional ML models

Operationalize Large Language Models (LLMs) and GenAI apps

Model Type

Predictive, classification, regression (e.g., credit scoring, fraud detection)

Generative, conversational, summarization, retrieval-augmented reasoning

Key Artifacts Managed

Data, features, model weights, metrics

Prompts, embeddings, vector stores, model adapters, RAG pipelines

Lifecycle Focus

Train → Validate → Deploy → Monitor → Retrain

Prompt design → Fine-tune → Deploy → Evaluate → Reinforce / Optimize

Examples

Logistic regression, XGBoost, Random Forest

GPT, Llama, Mistral, Claude, Gemini

Monitoring Focus

Model drift, performance decay, bias

Response quality, hallucination rate, toxicity, factual accuracy

Tools

MLflow, Kubeflow, Azure ML, SageMaker

LangChain, Prompt Flow, Weaviate, Pinecone, LlamaIndex, Trulens

Governance Concerns

Data quality, explainability, fairness

Content safety, bias, privacy, Responsible AI guardrails

⚙️ Where Each Comes into Picture (in Your EA Context)

Let’s map this to your Deutsche Bank–style EA Governance model:

🔹 MLOps

Where: After Curated Data Layer and Feature Store, before deployment of analytical models.

Used For:

  • Credit Scoring

  • Risk Prediction

  • Fraud Detection

  • Customer Segmentation

Lifecycle Flow:

Curated Data → Feature Engineering → Model Training → Model Registry → CI/CD Deployment → Drift Monitoring → Retraining

Governed By:

  • AI/ML CoE (Execution)

  • EARB (Architecture Review)

  • SARB (Operational Readiness)

  • Technology Council (Tools, Platforms)

🔹 LLMOps (GenAIOps)

Where: After model selection or fine-tuning of an LLM-based architecture — such as RAG or Agentic systems.

Used For:

  • Document Summarization

  • Policy Risk Analysis (GenAI Assistant)

  • Customer Chatbots

  • Regulatory Q&A using vector embeddings

Lifecycle Flow:

Document Ingestion → Chunking & Embedding → Vector Store → Prompt Template & Context → LLM (Base / Fine-Tuned) → Evaluation → Guardrails → Deployment → Feedback Loop

Key Steps:

  1. Prompt Engineering & Template Management

    • Version control of prompts & templates.

  2. Embedding Management

    • Store document embeddings in a vector DB (Pinecone, FAISS, Azure Search Vector).

  3. Evaluation Loop

    • Evaluate responses for factual accuracy, hallucination, bias.

  4. Human Feedback Loop

    • Collect feedback to improve prompts or fine-tune model.

  5. Guardrails

    • Enforce compliance (no PII leakage, ethical use, domain restrictions).

  6. Continuous Optimization

    • Update retrieval context, prompt templates, or fine-tuned models.

Governed By:

  • GenAI CoE (under AI/ML CoE umbrella)

  • Technology Council (platforms & standards)

  • Responsible AI Board (safety, ethics, bias)

  • EARB/SARB for architecture and deployment validation

🏗️ Putting It Together – Combined Lifecycle

Here’s how both coexist in the enterprise:

Data Ingestion → Data Lake (Raw → Curated → Analytics)
      ↓
Feature Engineering → Feature Store → MLOps Pipeline (for ML)
      ↓                              ↓
Document Ingestion → Embeddings → LLMOps Pipeline (for GenAI)
      ↓
Deployed Models & LLM Services → Monitored, Governed, Retrained via AI/ML CoE

🧩 Governance Alignment

Governance Body

Role

Technology Council

Approves MLOps & LLMOps platforms, standards, and tools (Azure ML, MLflow, LangChain, Prompt Flow)

AI/ML CoE

Defines lifecycle policies, pipelines, and monitoring templates

Responsible AI Board

Defines fairness, transparency, guardrails, and ethical principles

EARB (Architecture)

Reviews MLOps / LLMOps pipeline designs and integrations

SARB (Solution)

Validates production readiness, SLAs, and monitoring coverage

🧠 In Summary (Interview-Ready Answer)

“MLOps is the automation framework for traditional machine learning models — handling training, deployment, drift monitoring, and retraining. As we move into GenAI, we extend MLOps into LLMOps, which operationalizes Large Language Models — covering prompt management, vector stores, retrieval pipelines, guardrails, and continuous evaluation. In our EA governance, both fall under the AI/ML CoE and are standardized by the Technology Council. MLOps governs structured model lifecycles, while LLMOps ensures safe, explainable, and compliant deployment of GenAI capabilities.”


🏦 Unified AI/ML & GenAI Lifecycle with MLOps + LLMOps (Enterprise View)

This flow covers everything — from data ingestion → AI model → LLM orchestration → governance → continuous monitoring — structured exactly how a global bank (like Deutsche Bank, JP Morgan, or Barclays) would operationalize it.

🧩 1️⃣ Data Foundation Layer (Common for Both MLOps & LLMOps)

Objective: Establish a single governed source of truth for AI-ready data.

Flow:

Source Systems (Core Banking, LOS, CRM, Bureau, APIs)
       ↓
Data Ingestion (Kafka / Azure Event Hub / Data Factory)
       ↓
Data Lake Zones:
   • Raw Zone – Immutable source data for auditability  
   • Curated Zone – Cleansed, standardized, enriched datasets  
   • Analytics Zone – Model-ready datasets and features  
       ↓
Data Catalog (Purview / Collibra) → Metadata, lineage, data classification

Governance Checkpoint:

  • Data Governance Council ensures quality, privacy (GDPR), and lineage tracking.

  • EARB validates ingestion & data platform patterns.

⚙️ 2️⃣ MLOps Lifecycle (Traditional AI/ML Models)

Used For: Credit Scoring, Risk, Fraud, Forecasting, Churn, Recommendation.

Flow:

Curated Data → Feature Engineering → Feature Store
       ↓
Model Training (Azure ML / Databricks / MLflow)
       ↓
Experiment Tracking (metrics, params, code version)
       ↓
Model Registry (approved version)
       ↓
CI/CD Pipeline (Azure DevOps / GitHub Actions)
       ↓
Deployment (AKS / Azure ML Endpoint / API Gateway)
       ↓
Monitoring & Drift Detection (Prometheus / Evidently AI)
       ↓
Auto-Retraining Trigger (if drift detected)

Key MLOps Components:

  • Data Validation: Great Expectations / Deequ

  • Experiment Tracking: MLflow

  • Model Registry: MLflow / Azure ML Registry

  • Deployment: Docker, AKS, REST API

  • Monitoring: Grafana, Evidently AI

  • Automation: CI/CD pipelines, retraining triggers

Governance Touchpoints:

  • EARB: Architecture review of MLOps pipelines

  • SARB: Operational readiness & scalability validation

  • AI/ML CoE: Model lifecycle policy, bias testing templates

  • Technology Council: Approves MLOps toolset and patterns

🤖 3️⃣ LLMOps Lifecycle (Generative AI Models)

Used For: Document summarization, Risk policy Q&A, Compliance AI Assistants, Customer Chatbots, Research assistants.

Flow:

Document / Knowledge Ingestion (PDF, Policy, Email, Contracts)
       ↓
Document Preprocessing (OCR / Parsing / Cleaning)
       ↓
Chunking & Embedding Generation (LangChain / LlamaIndex)
       ↓
Vector Store (FAISS / Pinecone / Azure AI Search)
       ↓
Prompt Orchestration (Prompt Flow / LangGraph)
       ↓
LLM Model Invocation (GPT / Llama / Mistral / Claude / Gemini)
       ↓
Response Evaluation (TruLens / Ragas / Human Feedback)
       ↓
Guardrails (AI Safety, PII Filter, Bias Filter)
       ↓
Deployment (API Endpoint / Chat UI / Workflow Integration)
       ↓
Monitoring & Optimization (Feedback Loop, Prompt Tuning)

Key LLMOps Components:

  • Prompt Management & Versioning: Prompt Flow / LangChain Hub

  • Vector Store: FAISS / Pinecone / Weaviate / Azure Search Vector

  • Response Evaluation: TruLens / Ragas

  • Guardrails: Microsoft Presidio, NeMo Guardrails, AI Shield

  • Human Feedback: Reinforcement learning (RLAIF, RLHF lite)

Governance Touchpoints:

  • GenAI CoE (under AI/ML CoE): Defines LLMOps standards, prompt testing, vector security.

  • Responsible AI Board: Ensures safety, fairness, explainability, hallucination control.

  • Technology Council: Approves LLMOps frameworks & vector DBs.

  • EARB/SARB: Architecture & deployment validation for GenAI components.

🔄 4️⃣ Unified Continuous Lifecycle Management

Objective: Govern both traditional ML and GenAI models under one enterprise operating model.

Flow:

Data Platform → Model Development (ML / LLM) → Model Registry
       ↓
Deployment → Monitoring (Performance, Drift, Hallucination)
       ↓
Evaluation (Fairness, Bias, Explainability, Accuracy)
       ↓
Feedback Loop → Retraining / Prompt Optimization

Common Monitoring Themes:

  • Model drift (for ML)

  • Prompt & response drift (for LLM)

  • Bias/fairness across demographics

  • Regulatory compliance (EU AI Act, GDPR, RBI/SEBI AI guidelines)

Governance Alignment:

Layer

Governance Entity

Role

Strategic

Steering Committee / CTO / CIO

Sets AI vision, funding, compliance direction

Tactical

Technology Council, AI/ML CoE

Approves platforms, blueprints, standards

Operational

EARB, SARB, Domain Architects

Ensures implementation alignment and operational readiness

Federated

BU EA Committees

Implements BU-level AI/GenAI initiatives under central governance

🧠 5️⃣ Responsible AI Embedded Across Both Pipelines

Key AI/GenAI Principles integrated at every stage:

  • Fairness: Test models for bias across gender, income, geography

  • Transparency: Explainable outputs via SHAP / LIME / model cards

  • Accountability: Traceability from dataset to decision

  • Security & Privacy: Masking, encryption, PII protection

  • Human Oversight: Human-in-loop approval for high-risk AI decisions

Artifacts:

  • Model Cards (for ML)

  • Prompt Cards (for LLM)

  • Audit Reports (bias, explainability, fairness)

  • Compliance Dashboard

🧩 6️⃣ Toolchain Summary

Layer

MLOps Tools

LLMOps Tools

Data Ingestion

Kafka, ADF, Databricks

ADF, OCR, LangChain loaders

Data Prep / Validation

Great Expectations

Custom Validators, LangChain Loaders

Experiment Tracking

MLflow, Azure ML

Prompt Flow, TruLens

Model Registry

MLflow Registry

Prompt Registry / LangGraph Hub

Deployment

Docker, AKS, Azure ML

AKS, Azure AI Studio, API Gateway

Monitoring

Evidently AI, Prometheus

TruLens, Ragas, Grafana

Governance

Purview, Model Cards

Responsible AI, Guardrails

🏁 7️⃣ Final Summary (Interview-Ready Statement)

“In our enterprise AI ecosystem, we manage traditional ML models through MLOps — covering training, deployment, and drift monitoring — and Large Language Models through LLMOps, which focuses on prompt orchestration, vector management, and responsible response evaluation. Both lifecycles share a unified data and governance foundation, governed by the AI/ML CoE and overseen by the Technology Council. MLOps ensures consistency and automation for predictive models like Credit Scoring and Fraud Detection, while LLMOps governs GenAI-driven solutions such as Policy Analysis Assistants and Customer Chatbots — ensuring fairness, compliance, and explainability across both.”

==========================


====

🧩 Unified AI/ML + GenAI Architecture (Text Diagram)

                    ┌─────────────────────────────────────────────┐
                    │          STRATEGIC LAYER                    │
                    │  • AI Steering Committee                    │
                    │  • CTO / CIO / CDO                          │
                    │  • Responsible AI Board                     │
                    └─────────────────────────────────────────────┘
                                       │
                                       ▼
                    ┌─────────────────────────────────────────────┐
                    │           TACTICAL LAYER                    │
                    │  • Technology Council                       │
                    │  • AI/ML & GenAI CoE                        │
                    │  • Data Governance Board                    │
                    │  • Security & Compliance Board              │
                    └─────────────────────────────────────────────┘
                                       │
                                       ▼
                    ┌─────────────────────────────────────────────┐
                    │           OPERATIONAL LAYER                 │
                    │  • EARB – Architecture Review               │
                    │  • SARB – Solution Review                   │
                    │  • Domain Architects / BU Leads             │
                    │  • Project Architects                       │
                    └─────────────────────────────────────────────┘
                                       │
                                       ▼
                    ┌─────────────────────────────────────────────┐
                    │         FEDERATED BU EA COMMITTEES          │
                    │  • BU-level EA, Data Scientists, MLOps/LLMOps│
                    │  • Implementation & Feedback Loops           │
                    └─────────────────────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                              DATA FOUNDATION LAYER
──────────────────────────────────────────────────────────────────────────────
        ┌─────────────────────────────────────────────────────────────┐
        │                DATA INGESTION & STORAGE                      │
        │  • Source Systems: Core Banking, LOS, CRM, APIs             │
        │  • Ingestion: Kafka / ADF / Event Hub                       │
        │  • Data Lake Zones:                                         │
        │     - Raw Zone (Immutable, Source Data)                     │
        │     - Curated Zone (Cleansed, Standardized, Enriched)       │
        │     - Analytics Zone (Feature Ready)                        │
        │  • Data Catalog / Lineage (Purview / Collibra)              │
        └─────────────────────────────────────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                     AI/ML & GENAI MODEL DEVELOPMENT LAYERS
──────────────────────────────────────────────────────────────────────────────
        ┌───────────────────────────────┬──────────────────────────────┐
        │           MLOps Pipeline       │          LLMOps Pipeline     │
        ├───────────────────────────────┼──────────────────────────────┤
        │ • Feature Engineering         │ • Document Ingestion (OCR,   │
        │   (Databricks, Feature Store) │   Parsing, Chunking)         │
        │ • Model Training (Azure ML,   │ • Embedding Generation       │
        │   MLflow, TensorFlow)         │   (LangChain, LlamaIndex)    │
        │ • Experiment Tracking         │ • Vector Store (FAISS,       │
        │   (MLflow, Weights & Biases)  │   Pinecone, Azure Search)    │
        │ • Model Registry (Versioning) │ • Prompt Orchestration       │
        │ • Bias & Explainability Tests │   (Prompt Flow, LangGraph)   │
        │ • Model Approval (CoE + EARB) │ • LLM Inference (OpenAI,     │
        │                               │   Azure OpenAI, Llama, etc.) │
        │                               │ • Response Evaluation (TruLens│
        │                               │   Ragas, Human Feedback)     │
        └───────────────────────────────┴──────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                            DEPLOYMENT & OPERATIONS
──────────────────────────────────────────────────────────────────────────────
        ┌───────────────────────────────┬──────────────────────────────┐
        │       MLOps Deployment         │       LLMOps Deployment       │
        ├───────────────────────────────┼──────────────────────────────┤
        │ • Containerization (Docker)   │ • Containerization (Docker)   │
        │ • Deployment (AKS / ACI)      │ • Deployment (AKS / AI Studio)│
        │ • Model Serving API Gateway   │ • Chat/Agent API Endpoints    │
        │ • CI/CD (Azure DevOps)        │ • CI/CD (Prompt Flow Pipelines)│
        │ • Monitoring: Accuracy, Drift │ • Monitoring: Prompt Quality, │
        │   (Evidently AI, Grafana)     │   Hallucination, Guardrails   │
        │ • Auto-Retraining (Scheduled) │ • Continuous Prompt Tuning    │
        └───────────────────────────────┴──────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                             MONITORING & GOVERNANCE
──────────────────────────────────────────────────────────────────────────────
        ┌─────────────────────────────────────────────────────────────┐
        │   COMMON GOVERNANCE LAYER                                   │
        │   • Model Cards (AI/ML) & Prompt Cards (LLM)                │
        │   • Responsible AI Dashboard                                │
        │   • Bias & Fairness Audit                                   │
        │   • Explainability Reports (SHAP, LIME)                     │
        │   • Model Drift & Performance Metrics                       │
        │   • Compliance with EU AI Act, GDPR, RBI Guidelines         │
        │   • Feedback Loop to CoE & Model Owners                     │
        └─────────────────────────────────────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                               CONTINUOUS IMPROVEMENT
──────────────────────────────────────────────────────────────────────────────
        ┌─────────────────────────────────────────────────────────────┐
        │   • Retraining Triggers (MLOps)                             │
        │   • Prompt Optimization (LLMOps)                            │
        │   • Reinforcement Learning (RLHF / RLAIF)                   │
        │   • Continuous Feedback from Business Users                 │
        │   • Governance Updates via Technology Council               │
        └─────────────────────────────────────────────────────────────┘

🧠

“In our enterprise, the AI ecosystem runs on a unified data foundation with layered governance — from Strategic Steering down to Operational EA Boards. The MLOps pipeline manages predictive models like credit scoring and fraud detection, handling model training, versioning, deployment, and drift monitoring. The LLMOps pipeline governs GenAI workloads such as document summarization, policy Q&A, and AI copilots — focusing on prompt orchestration, vector storage, and response evaluation. Both are continuously monitored through a Responsible AI layer that enforces fairness, explainability, and compliance, with feedback loops feeding into retraining and prompt optimization. This ensures a consistent, safe, and compliant AI adoption at enterprise scale.”

🧩 Unified AI Platform Layer (Text Diagram)

──────────────────────────────────────────────────────────────────────────────
                        ENTERPRISE AI PLATFORM LAYER
──────────────────────────────────────────────────────────────────────────────
         ┌──────────────────────────────────────────────────────────────┐
         │              SHARED PLATFORM SERVICES                        │
         │--------------------------------------------------------------│
         │  1️⃣  Data Access & Feature Management                       │
         │      • Feature Store (Azure ML / Databricks)                 │
         │      • Metadata & Lineage (Purview, Collibra)                │
         │      • Data Access Controls (RBAC, ABAC, PII Masking)        │
         │                                                              │
         │  2️⃣  Model Lifecycle Services                               │
         │      • Model Registry (MLflow / Azure ML)                    │
         │      • Versioning, Approval Workflow (EARB + CoE)            │
         │      • Model Deployment APIs (AKS, Azure ML Endpoints)       │
         │                                                              │
         │  3️⃣  Vector & Embedding Services (for GenAI)                │
         │      • Vector DB (FAISS, Pinecone, Azure AI Search)          │
         │      • Embedding Generation (OpenAI / Sentence Transformers) │
         │      • Context Retrieval APIs for RAG                        │
         │                                                              │
         │  4️⃣  Prompt Orchestration & LLMOps Layer                    │
         │      • Prompt Templates, Chains, Agents (LangChain, Flow)    │
         │      • Prompt Versioning & Audit Logs                        │
         │      • Guardrails (Toxicity, Hallucination Filters)          │
         │                                                              │
         │  5️⃣  CI/CD & MLOps Pipeline Automation                      │
         │      • CI/CD Pipelines (Azure DevOps / GitHub Actions)       │
         │      • Automated Training / Deployment (MLOps)               │
         │      • Continuous Evaluation (Model Drift / LLM Feedback)    │
         │                                                              │
         │  6️⃣  Monitoring & Observability                             │
         │      • Model Monitoring (Evidently AI, Grafana)              │
         │      • Prompt/Response Quality Metrics (TruLens, Ragas)      │
         │      • Audit Logs & Metrics for AI Performance Dashboard     │
         │                                                              │
         │  7️⃣  Responsible AI & Compliance Services                   │
         │      • Bias & Fairness Checker                               │
         │      • Explainability (SHAP, LIME)                           │
         │      • Model Cards / Prompt Cards Repository                 │
         │      • AI Risk Rating (GDPR, EU AI Act, RBI Compliance)      │
         │                                                              │
         │  8️⃣  Governance Integration Points                          │
         │      • EARB – Architecture Review Workflow                   │
         │      • SARB – Solution Readiness Approval                    │
         │      • AI/ML CoE – Lifecycle Templates, Policies             │
         │      • Technology Council – Tools & Platform Rationalization │
         │                                                              │
         │  9️⃣  Feedback & Continuous Improvement                      │
         │      • Human Feedback Loop (RLAIF / RLHF)                    │
         │      • Automated Retraining Triggers                         │
         │      • Prompt Optimization Recommendations                   │
         └──────────────────────────────────────────────────────────────┘
                                       │
                                       ▼
──────────────────────────────────────────────────────────────────────────────
                          CONSUMER / BUSINESS LAYER
──────────────────────────────────────────────────────────────────────────────
         ┌──────────────────────────────────────────────────────────────┐
         │  • Credit Scoring, Risk Models (via MLOps APIs)              │
         │  • Customer GenAI Assistants (via LLMOps APIs)               │
         │  • Compliance Copilot, KYC Validator, Loan Advisor           │
         │  • Enterprise Chatbots, Regulatory Policy Search             │
         └──────────────────────────────────────────────────────────────┘

🧠

“we’re enabling AI through a unified AI platform layer that standardizes data, model, and orchestration services across both MLOps and LLMOps. This platform provides common capabilities like model registry, feature store, vector store, prompt orchestration, and Responsible AI monitoring. Both traditional ML and GenAI models share the same DevSecOps and governance backbone — governed by EARB, SARB, and the AI/ML CoE. The outcome is a single, auditable, and compliant platform where credit scoring, fraud detection, document summarization, and customer copilots coexist seamlessly, reducing silos and ensuring AI trust and compliance.”

🧩 Unified AI/ML + GenAI Governance RACI Matrix

──────────────────────────────────────────────────────────────────────────────

LEGEND:

R = Responsible A = Accountable C = Consulted I = Informed

──────────────────────────────────────────────────────────────────────────────


Governance Bodies:

1️⃣ AI Steering Committee / Responsible AI Board

2️⃣ Technology Council

3️⃣ Enterprise Architecture Review Board (EARB)

4️⃣ Solution Architecture Review Board (SARB)

5️⃣ AI/ML & GenAI CoE

6️⃣ Domain / BU Architects

7️⃣ Data Governance Board

──────────────────────────────────────────────────────────────────────────────


| # | Activity / Deliverable | Steering/RAI | Tech Council | EARB | SARB | AI/ML CoE | BU Arch | Data Gov |

|---|------------------------------------------------------|---------------|---------------|------|------|-------------|----------|-----------|

| 1 | Define AI/ML & GenAI Strategy, Vision | A/R | C | I | I | C | I | C |

| 2 | Approve AI/GenAI Principles (Fairness, Explainable) | A/R | C | I | I | C | I | C |

| 3 | Select AI Platforms & Tools (Azure ML, LangChain etc)| I | A/R | C | I | C | I | I |

| 4 | Define Reference Architectures (MLOps, LLMOps) | I | A/R | C | I | C/R | C | I |

| 5 | Create AI Lifecycle Policies (Approval, Retraining) | A/R | C | C | I | R | I | C |

| 6 | Establish Model Approval Workflow (EARB + CoE) | I | I | A/R | C | R | C | I |

| 7 | Approve GenAI Blueprints (RAG, Guardrails, Agents) | I | A/R | C | I | R | C | I |

| 8 | Define Data Governance for AI/ML | C | I | C | I | C | C | A/R |

| 9 | Data Quality & Bias Checks (Fairness, Lineage) | A/R | C | C | I | R | C | R |

|10 | Develop ML/LLM Models (Training, Fine-tuning) | I | I | C | I | A/R | R | C |

|11 | Perform Model Validation & Testing (Bias, Drift) | C | I | A/R | C | R | R | C |

|12 | Manage Model Registry / Vector Store | I | I | C | I | A/R | R | C |

|13 | Deploy Models via CI/CD Pipelines (MLOps/LLMOps) | I | I | C | A/R | R | R | I |

|14 | Implement Responsible AI Controls (Explainability) | A/R | C | C | I | R | C | C |

|15 | AI Monitoring: Drift, Fairness, Prompt Quality | C | I | I | A/R | R | R | C |

|16 | Model Cards / Prompt Cards Publication | I | I | C | I | A/R | R | I |

|17 | Audit & Compliance Review (EU AI Act, GDPR, RBI) | A/R | C | C | I | C | I | R |

|18 | Continuous Improvement (Retraining / Prompt Tuning) | C | I | C | A/R | R | R | C |

|19 | Knowledge Sharing, Templates, Lessons Learned | I | C | I | I | A/R | R | I |

|20 | Periodic Governance Review & Metrics Reporting | A/R | C | C | I | R | I | C |

──────────────────────────────────────────────────────────────────────────────

🧠

“We’ve extended our existing EA governance to clearly define accountability for AI and GenAI initiatives. At the top, the AI Steering Committee / Responsible AI Board owns the ethical and strategic dimensions — fairness, explainability, compliance. The Technology Council defines platforms, standards, and reference blueprints for MLOps and LLMOps. The AI/ML & GenAI CoE acts as the execution authority — responsible for model lifecycle management, bias testing, and publishing model/prompt cards. EARB ensures architectural compliance for all AI workloads, while SARB validates production readiness, security, and SLAs. Finally, the Data Governance Board ensures that underlying data used in training and embeddings complies with privacy, lineage, and quality standards. Together, this RACI structure gives clear ownership from strategy to delivery — ensuring AI/ML and GenAI initiatives are not only innovative but also responsible, compliant, and auditable.”

🧠 Where Does MLOps Start?

MLOps doesn’t start at feature engineering — it starts one step before that, at the model development lifecycle orchestration layer, but it leverages outputs from the data engineering and feature engineering stages.

To be clear:

Phase

Owner

Description

MLOps Involvement

1. Data Ingestion & Preparation

Data Engineering

Raw data from source systems (core banking, CRM, LOS) → Data Lake → Curated datasets

✅ Indirect — MLOps consumes curated data, doesn’t manage ingestion

2. Feature Engineering

Data Science / Feature Engineering Team

Create derived variables (e.g., income-to-debt ratio, credit utilization, age group) and store them in Feature Store

✅ Partial — MLOps connects to the Feature Store, tracks versions, and automates feature reuse

3. Model Development

Data Science

Train model using features, tune hyperparameters, test bias & accuracy

✅ Core MLOps starts here — managing experiment tracking, model versioning, reproducibility

4. Model Packaging & Registration

MLOps

Package model artifacts, register in Model Registry, record metadata and lineage

✅ Fully within MLOps

5. Model Deployment (CI/CD)

MLOps / DevOps

Deploy model to production endpoints (AKS, Azure ML Endpoint, SageMaker, etc.)

✅ Fully within MLOps

6. Model Monitoring & Retraining

MLOps

Monitor performance, detect drift, trigger retraining

✅ Fully within MLOps

📊 In Summary:

  • Feature Engineering → Input to MLOpsIt’s a pre-MLOps activity handled by data scientists and data engineers.

  • MLOps Starts → From Model Experimentation onwardsOnce features are ready, MLOps automates the rest:

    • Experiment tracking

    • Model versioning

    • Deployment

    • Monitoring

    • Retraining

🧩 Interview-Ready Answer

“MLOps begins where data engineering hands off feature-ready data.Feature engineering is a critical precursor — it produces reusable, versioned datasets in the feature store.From there, MLOps takes over — automating model training, packaging, deployment, drift monitoring, and retraining through CI/CD pipelines. In short, feature engineering feeds the MLOps pipeline; MLOps operationalizes everything that comes after.”

🧩 Where Does LLMOps Start?

LLMOps (Large Language Model Operations) starts after foundational or fine-tuned LLMs are available, and focuses on operationalizing, monitoring, and optimizing LLM lifecycle — similar to how MLOps operationalizes traditional ML models.

But since LLMs involve prompt engineering, retrieval, context management, and agent orchestration, the boundary is slightly different.

🔁 Step-by-Step Flow — and Where LLMOps Starts

Stage

Description

Responsibility

LLMOps Involvement

1. Data Collection & Preparation

Collect unstructured data (documents, chats, PDFs, knowledge base)

Data Engineering / GenAI Data Team

❌ Not directly (DataOps stage)

2. Data Curation & Chunking

Clean, tokenize, chunk documents, store embeddings in vector DB (e.g., Pinecone, pgvector, FAISS)

AI Engineering / Data Science

⚠️ Input for LLMOps (pre-processing)

3. Model Selection / Fine-Tuning

Select base LLM (GPT, LLaMA, Mistral, Claude) and fine-tune or parameter-efficient tune (LoRA, PEFT)

Data Science / AI Team

LLMOps starts here

4. Model Packaging & Deployment

Register fine-tuned model, deploy via model registry, endpoint (Azure AI Studio, Sagemaker Jumpstart, Hugging Face Hub)

LLMOps

✅ Core responsibility

5. Prompt Engineering & Orchestration

Manage prompts, templates, context injection, tools, agents, memory

AI Engineer / PromptOps / LLMOps

✅ Core LLMOps — part of runtime orchestration

6. Retrieval Augmented Generation (RAG)

Integrate vector DB, retriever, LLM for contextual response

AI Engineering / MLOps / LLMOps

✅ LLMOps manages lifecycle, versioning, observability

7. Evaluation & Testing

Test LLM with metrics (BLEU, ROUGE, hallucination, factual accuracy, toxicity, bias)

AI QA / LLMOps

✅ Core LLMOps responsibility

8. Continuous Monitoring & Feedback Loop

Monitor drift, hallucination, latency, prompt failure, user feedback

LLMOps / Observability Team

✅ Fully within LLMOps

9. Continuous Improvement (CI/CD)

Retrain or re-tune based on feedback, update embeddings, prompt versions

LLMOps

✅ Fully within LLMOps

🚀 In Short

🧠 MLOps starts at model training → focuses on structured data models (predictive)🧠 LLMOps starts at model fine-tuning or orchestration → focuses on language models (generative)

🧩 Text Visual Diagram

[ DataOps Layer ]
 ├── Raw → Curated → Analytics Zones
 └── Prepares unstructured & structured data

[ Feature / Embedding Engineering ]
 ├── Create embeddings, metadata, chunk text
 └── Stored in vector DB (e.g., Pinecone, pgvector)

[ LLMOps Lifecycle ]
 ├── Model Fine-Tuning / Adaptation (LoRA, PEFT)
 ├── Model Packaging & Registry
 ├── Deployment (API, endpoint, container)
 ├── Prompt Management (templates, context)
 ├── RAG Integration & Tool Orchestration
 ├── Evaluation (factual accuracy, bias, toxicity)
 ├── Monitoring (drift, hallucination, feedback)
 └── Continuous Improvement (CI/CD for LLMs)

🗣️

“LLMOps starts once the data is curated and embeddings are available.It operationalizes the lifecycle of large language models — from fine-tuning, prompt orchestration, and RAG integration to monitoring hallucination, drift, and user feedback. If MLOps is about managing model lifecycle for structured prediction models, LLMOps is about managing conversational and generative models end-to-end — including context, prompts, and human feedback loops.”

🧩 High-Level Definition

Term

Description

Analogy

MLOps

CI/CD + governance + monitoring framework for traditional AI/ML models (regression, classification, clustering).

“DevOps for ML models.”

LLMOps

CI/CD + observability + safety framework for Large Language Models (LLMs, RAG, Agents).

“DevOps for Generative AI.”

💡

“MLOps and LLMOps are both extensions of CI/CD principles to the AI/ML lifecycle — enabling continuous integration, deployment, and monitoring of models. MLOps applies to predictive models, while LLMOps extends those principles to generative models — managing additional layers like prompt orchestration, retrieval pipelines, vector stores, and hallucination monitoring.”

⚙️ How They Map to CI/CD Concepts

CI/CD Concept

MLOps Equivalent

LLMOps Equivalent

Code Versioning (Git)

Model versioning (Model Registry)

Model & Prompt versioning (LLM Registry)

Build Pipeline

Feature extraction, model training

Fine-tuning, adapter training (LoRA, PEFT)

Test Stage

Model validation (accuracy, bias, drift)

LLM evaluation (factual accuracy, toxicity, coherence)

Deployment Pipeline

Model packaging (Docker, API)

LLM deployment (API, RAG pipeline, prompt orchestration)

Monitoring & Feedback

Data drift, model drift

Hallucination, latency, feedback-based tuning

Rollback & Retraining

Retrain model if performance drops

Re-fine-tune or prompt adjust if hallucination spikes

🧠 Key Difference

  • MLOps deals with structured or tabular data pipelines → e.g., predicting loan eligibility, churn probability, fraud risk.

  • LLMOps deals with unstructured text / document / conversational pipelines → e.g., summarizing a policy document, answering customer queries.

🧩 Text Visualization

                +----------------------------+
                |         CI/CD Base         |
                +----------------------------+
                      |                |
                      |                |
        +-------------+                +----------------+
        |                                             |
  +-----v-----+                                  +----v-----+
  |  MLOps    |                                  |  LLMOps  |
  +-----------+                                  +----------+
  | Model Dev |                                  | LLM Fine-tuning |
  | Train/Test|                                  | Prompt Mgmt     |
  | Deploy    |                                  | RAG Pipeline    |
  | Monitor   |                                  | Drift/Halluc.   |
  +-----------+                                  +----------------+

🗣️

“Yes, MLOps and LLMOps can both be seen as CI/CD pipelines for AI — they automate model development, deployment, and monitoring. However, LLMOps extends the scope by managing not just model versions but also prompts, context, embeddings, and safety — making it essential for GenAI lifecycle management.”

 
 
 

Recent Posts

See All
How to replan- No outcome after 6 month

⭐ “A transformation program is running for 6 months. Business says it is not delivering the value they expected. What will you do?” “When business says a 6-month transformation isn’t delivering value,

 
 
 
EA Strategy in case of Merger

⭐ EA Strategy in Case of a Merger (M&A) My EA strategy for a merger focuses on four pillars: discover, decide, integrate, and optimize.The goal is business continuity + synergy + tech consolidation. ✅

 
 
 

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
  • Facebook
  • Twitter
  • LinkedIn

©2024 by AeeroTech. Proudly created with Wix.com

bottom of page